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On the resolution of density within the Earth
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Abstract

Roughly 30 years have passed since the last publication of a linear resolution calculation of density inside the Earth. Since
that time, the data set of free oscillation degnerate frequencies has been completely re-estimated taking into account the
biassing effects of splitting and coupling due to 3D structure. This paper presents a new resolution analysis based on the new
data and focuses on two particular issues: (1) the density jump at the inner-core boundary which is important in discussions
of the maintenance of the geodynamo; and (2) a possible density excess in the lowermost mantle which might be indicative of
a “hot abyssal layer”. We find that the density jump at the inner-core boundary is 0.82± 0.18 Mg m−3 which is significantly
larger than previously thought. We also find little support for an excess density in the lowermost mantle though an increase
of 0.4% is possible.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

New calculations of the energy required to power
the dynamo(Buffet et al., 1996; Labrosse et al., 1997;
Stacey and Stacey, 1999; Gubbins et al., in press)sug-
gest that there may be difficulty in maintaining a dy-
namo throughout earth history and that the inner-core
of the Earth is a relatively young feature. It has long
been known that an efficient way of maintaining
the dynamo is by compositional convection associ-
ated with the growth of the inner-core(Loper, 1978;
Gubbins et al., 1979). The amount of energy that
this source can produce is critically dependent on the
density jump at the inner-core boundary (ICB) (more
correctly, on the percentage of the density jump which
is associated with a compositional jump at the ICB).
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A larger density jump means that a dynamo can be
maintained with slower growth rates of the inner-core
than would otherwise be necessary. Another issue
of considerable interest which requires an accurate
knowledge of the density within the Earth is the pos-
sible existence of a compositionally distinct layer in
the lower mantle. Such a layer has been proposed by
Kellogg et al. (1999)as a repository for a variety of
geochemical components including radioactive ele-
ments. Such a layer would be hot but would maintain
a higher density than the mantle above because of a
differing chemical composition.Kellogg et al. (1999)
estimate that an excess density of about 1% (over an
isochemical mantle) would result in a stable layer
though with a strong topography on its upper bound-
ary. This strong topography would make the layer
difficult to detect using standard seismic techniques.

The density jump at the ICB can currently be con-
strained using two techniques. One relies on estimates
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of the impedance contrast at the ICB based on the am-
plitude of the reflected phasePKiKP. PKiKP is rarely
observed and there is some concern that observations
may only be possible when focusing gives unusually
large amplitudes. Indeed, early work using this tech-
nique (Bolt and Qamar, 1970; Souriau and Souriau,
1989)suggested that the density jump may be as large
as 1.6 Mg m−3 which is about three times the currently
accepted value.Shearer and Masters (1990)evalu-
ated these results and found thatPKiKP should be
observed much more often if the density jump really
is this large. They gave an approximate upper limit of
1.0 Mg m−3. New measurements using high frequency
seismic arrays may go some way to refining this
estimate.

The second technique uses the fact that free os-
cillation frequencies are sensitive to density within
the Earth. The last published general calculation of
resolution of density was given byGilbert et al.
(1973) though Masters (1979)gave a discussion
of how well the density jump at the ICB was re-
solved using a free oscillation data set compiled by
Gilbert and Dziewonski (1975). Much of the original
data set came from spectra of digitized recordings
of a single earthquake—the 1970 Colombian event.
Since that time, many great earthquakes have been
recorded by the ever-expanding global digital seis-
mic network allowing an extensive evaluation of the
effect of 3D structure on free oscillation frequen-
cies. This has resulted in a data set of extremely
accurate degenerate frequencies for some 850 free
oscillations, over 50 of which sample the inner-core
(see the Reference Earth Model web page for details:
http://mahi.ucsd.edu/Gabi/rem.html). Of these 50, the
radial modes provide some of the greatest sensitivity
to density in the deep earth(Dahlen and Tromp, 1998).

Density resolution in the Earth using free oscillation
frequencies has been recently discussed byKennett
(1998) who uses a non-linear technique. Computa-
tional considerations lead him to use a rather small
subset of mode frequencies and he also assumed that
the seismic velocities were known perfectly. In the
next section, we present a standardlinear resolution
analysis using the full mode dataset with ascribed error
bounds on the frequencies and taking into account un-
certainties in the seismic velocities. This gives a good
indication of the resolution available to us. Using the
complete mode data set and allowing trade-offs be-

tween seismic velocity and density with the non-linear
method is still computationally infeasible but should
be kept in mind for the future.

2. A standard resolution analysis

A (fairly) straightforward application of perturba-
tion theory relates a relative perturbation in thek’th
mode degenerate frequency (ωk) to perturbations in the
radial profiles of seismic velocities and density as well
as perturbations in the radii of discontinuities (hj):
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where the kernels (K, M, R, Aj) can be easily com-
puted for each mode from the eigenfunctions of some
reference model(Woodhouse and Dahlen, 1978;
Dahlen and Tromp, 1998). Eq. (1) assumes that the
reference model is linearly close to the real spheri-
cally averaged Earth which is a good approximation
for most modes (though see below).

First, we perform a standard resolution analysis fol-
lowing Backus and Gilbert (1970). We attempt to con-
struct a datum from a linear combination of all our
free oscillations frequencies which is sensitive only to
some property (e.g. density) concentrated about some
target radius (r0) . That is, we seek multipliers,ak,
such that∑
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whereK = ∑
k akKk,M = ∑

k akMk,R = ∑
k ak

Rk,Aj = ∑
k akAjk. If we were trying to resolve den-

sity, we should choose the mulitpliers to makeR as
peaked as possible at the target radius andK,M,Aj

are made as small as possible (preferably zero). In this
case,R is called the “resolving kernel”. Our linear
combination of data will then be related to the average
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of density integrated over the resolving kernel (this is
called the “local average” in Backus–Gilbert terminol-
ogy). This local average is made unbiased by forcing
the resolving kernel to be unimodular:

a · b = 1 where bk =
∫ a

0
Rk dr (3)

Backus and Gilbert show that minimizinga · S · a

with S given by

Sik =
∫ a

0
[12RiRk(r − r0)

2 + MiMk + KiKk] dr

+
∑

j

AjiAjk (4)

results in a resolving kernel of the desired shape. The
factor of 12 in the above equation is chosen to make
a · S · a (the “spread”) a measure of the width of the
resolving kernel. The spread can sometimes have a
large contribution from the fact that the resoving kernel
is not well-centered at the target radius—we therefore
also calculate the “center” of the kernel and the spread
about the center (called the “width”) following the
recipe given byBackus and Gilbert (1970).

When the data have errors, the linear combination
on the left hand side ofEq. (2) will have an associ-
ated error. We would also like to choose theak ’s to

Fig. 1. Theoretical resolution of density in the Earth by the free-oscillation data set for various target error levels. Starting from the top
curve, the target errors are 0.5, 1, 5, and 10%. As an example of how to read this plot, the density at a radius of 2000 km is known to an
error of 0.5% if averaged over a resolving length of about 270 km.

minimize this error since it determines how precise
our local average will be. Errors on the mode obser-
vations map to a contributionσ2

av = a · E · a whereE

is the covariance matrix of the observations (usually
taken to be diagonal). Not surprisingly, the two goals
of choosing a combination of data which isolates in-
formation about a property at some target radius and
having that combination be precise are mutually ex-
clusive and we have a trade-off between the two. In
practice, we minimizea · M · a subject toa · b = 1
with M = S + λE. The solution is

a = M−1 · b

b · M−1 · b
(5)

The trade-off parameter,λ, is varied until some desired
value ofσav is achieved.

Figs. 1–3give the width as a function of the center
of the kernel for various target error levels for den-
sity, shear velocity, and compressional velocity respec-
tively. Fig. 4illustrates the resolving kernel for density
for a targetσav of 0.5%. For compressional and shear
velocity in the mantle, we can make acceptable resolv-
ing kernels for target error levels as small as 0.05% but
this is not true for shear velocity in the inner-core or
for density anywhere. If we ask for target levels much
less than 0.5% for density, we typically end up with
spreads greater than the radius of the Earth. On the
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Fig. 2. Theoretical resolution of shear velocity in the Earth by the free-oscillation data set. The four curves in the inner-core are for target
error levels of 0.5, 1, 5, and 10% (from top to bottom). In the mantle, there are six target error levels of 0.05%, 0.1%, 0.5%, 1%, 5%,
and 10% (from top to bottom).

Fig. 3. Theoretical resolution of compressional velocity in the Earth by the free-oscillation data set. There are six target error levels of
0.05, 0.1, 0.5, 1, 5, and 10% (from top to bottom).

other hand, at 0.5%, density is resolved over widths
as low as 150 km in the mantle, 250 km in the outer
core, and about 400 km in the top of the inner-core.

These results indicate that the free oscillation data
are capable of saying useful things about density in
the inner-core and in the lowermost mantle.

3. A modified analysis

The careful reader will note that we have said
nothing about the actual density inside the earth—
just about our ability to resolve it. If we wish to use
Eq. (1) to make quantitative statements about den-



G. Masters, D. Gubbins / Physics of the Earth and Planetary Interiors 140 (2003) 159–167 163

Fig. 4. Resolving kernels for density for a target error level of
0.5% and for various target radii. The heavy curve isR while the
light curves (close to zero and not always visible) areM andK.

sity, we have to be sure that certain conditions are
fulfilled. The primary condition is that the non-linear
terms neglected inEq. (1) can really be neglected.
Clearly, this is not true for modes whose frequencies
have been measured very precisely as even a small
non-linear term is amplified by error weighting. After
some experiment, we foundEq. (1) to be satisfactory
if we force the observational errors to be greater than
0.05%. In effect, we are degrading the information
available in the free oscillation data set but we gain the
ability to do a linear analysis. Even at this level, a few
mode frequencies can be strong non-linear functions
of the starting model (this is true of modes whose
eigenfunctions change from oscillatory to exponential
behavior close to an internal discontinuity) and such
modes have been removed from further analysis.

Another issue is the interpretation of “local
averages” when the exact shape of the resolving ker-
nel is not simple. We have found it easiest to make

resolution kernels which are approximations to box-
cars between specified radii(r1, r2), which we can
achieve if we do not try to maker2 − r1 too small.
The local average over the model computed with such
a kernel can be compared with the true mean of the
model betweenr1 andr2 and allows us to assess any
bias. To make boxcar resolving kernels, it suffices to
replaceS in Eq. (4)by

Sik =
∫ a

0
[RiRk + MiMk + KiKk] dr +

∑
j

AjiAjk

andb in Eq. (3)by

bk =
∫ r2

r1

Rk dr

The solution is again given byEq. (5)(see equation 42
of Masters and Gilbert, 1983). If the data have been
“ranked and winnowed” following the procedure of
Gilbert (1971), Sij will just be δij andM = I + λE is
diagonal.Eq. (5) is then trivial to solve for a variety
of λ’s until a desiredσav is achieved.

Suppose our minimization is successful in the sense
thatK,M,Aj are small enough to be neglected, then

ρ̄e � ρ̄m

(
1 +

∑
k

ak

δωk

ωk

)
(6)

where ρ̄m is the model density averaged betweenr1
andr2 andρ̄e is our inferred local average for the real
earth.σav is the relative error on̄ρe.

When K,M,Aj, are not exactly zero, these
terms can be thought of as contributing an addi-
tional uncertainty in the answer (this was called the
“contamination” byMasters, 1979). We can make an
upper estimate of the contamination by choosing max-
imum allowable perturbations in density and velocity
as a function of radius (see e.g.,Masters, 1979for
somewhat dated bounds) and computing terms such as

CVp =
∫ a

0
|K|

∣∣∣∣δVp

Vp
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max

dr

The total contamination in a local average of density
would then be given by

C = [C2
Vp + C2

Vs + C2
h]1/2 (7)

The total relative uncertainty on the local average is
then bounded by [σ2

av + C2]1/2. Having said this, we
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will mainly confine attention to those solutions where
the contamination is much less than the error due to
observational uncertainty.

To test the validity of the assumptions behind our
analysis, we computed a synthetic data set for a model
with density in the inner-core increased by a rather
extreme 10%. We were able to construct a resolv-
ing kernel which was a good approximation to a box
car in the inner-core providedσav ≥ 1% and recov-
ered the correct mean density of the inner-core to
within the observational uncertainty. Thus, equation
(1) with data errors forced to be greater than 0.05%
is linear to perturbations of at least 10%. As an ad-
ditional test, we repeated the analysis to estimate the
mean density in the inner-core using five different 1D
models of the earth (1066A, 1066B ofGilbert and
Dziewonski, 1975; PEMA of Dziewonski et al., 1975;
isotropic PREM ofDziewonski and Anderson, 1981;
AK135 of Montagner and Kennett, 1996). Despite the
fact that these models fit the data to very different
extents, the local average that is recovered is always
independent of the starting model (within the obser-
vational uncertainty).

4. The density jump at the ICB

To estimate the density jump at the ICB, we con-
sider two 500 km wide regions centered 250 km above
and below the ICB.Fig. 5 shows resolving kernels
for various target error levels for the region below
the ICB. Clearly, a target of 0.5% leads to a rather
poor resolving kernel (with significant contamination)
but a target of 1% or greater gives a well-formed
resolving kernel with very little contamination. At
1% error, the local averages for the five different
models vary between 12.90 and 12.95 Mg m−3 with
a median of 12.91 Mg m−3. At 2%, the median local
average for the five models is 13.07 Mg m−3. Both
of these numbers are slightly higher than the median
of the model means which is 12.83 Mg m−3. These
results suggest that the modes prefer a slightly denser
upper inner-core than usually found in 1D Earth
models.

Resolving kernels for the region above the ICB are
shown inFig. 6. The 1% resolving kernel is not quite
as flat as we would like but the bias induced by using
this kernel instead of a true boxcar in estimating means

Fig. 5. Attempts to make a boxcar resolving kernel for density
in the top 500 km of the inner-core for target error levels of 0.5,
1, and 2% (from bottom to top). The heavy curve isR while
the light curves areM andK. Contamination is significant for
the 0.5% case reflecting the reduced sensitivity of the modes to
structure near the center of the Earth. UsingR in either of the
top two cases to estimate the mean density of the model in this
region (as opposed to a true boxcar) results in an error of less than
0.02%.

is less than 0.05%. The local averages for the five
models vary between 11.76 and 11.90 Mg m−3 with
a median of 11.80 Mg m−3. At 2%, the median local
average is 11.71 Mg m−3. Both of these numbers are
slightly lower than the median of the model means
which is 12.01 Mg m−3. Apparently, the modes prefer
a slightly less dense lower outer core than is usual in
1D models. To check this possibility, we estimate the
mean density of the whole outer core. We can make
an extremely good boxcar in the outer core for target
errors of 0.5% or even less (Fig. 7). We find a mean
density of 11.16 ± 0.06 Mg m−3 compared with the
models which have a mean density of 11.24 Mg m−3.
Apparently, a slight decrease in density for the whole
outer core is indicated.

These small changes have a significant impact on
our estimate of the density jump at the ICB. For
example, the difference between the mean densities
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Fig. 6. Attempts to make a boxcar resolving kernel for density in
the bottom 500 km of the outer core for target error levels of 0.5,
1, and 2% (from bottom to top). The heavy curve isR while the
light curves areM andK. Contamination is not totally negligible
for the 0.5% case. UsingR in either of the top two cases to
estimate the mean density of the model in this region (as opposed
to a true boxcar) results in an error of less than 0.04%.

above and below the ICB in the starting models
is on average 0.84 Mg m−3 of which 0.57 Mg m−3

comes from the density jump at the ICB and the
other 0.27 Mg m−3 comes from compression ef-
fects (since we are dealing with means centered 250
km from the ICB). The compression contribution
of 0.27 Mg m−3 agrees well with an estimate us-
ing the Adams–Williamson equation. On the other
hand, the difference in the inferred local averages is
1.09±0.18 Mg m−3 which leads to an inference of an
inner core density jump of 0.82 ± 0.18 Mg m−3 (as-
suming a compression contribution of 0.27 Mg m−3).
The density jump due to solidification alone can be
estimated to be about 0.21 Mg m−3 (Alfe et al., 2000;
Gubbins et al., in press); so our new estimate in-
creases the compositional part of the density jump
from 0.36 to 0.62 Mg m−3. The consequences of this
for the thermal history of the core will be considered
elsewhere.

Fig. 7. Attempts to make a boxcar resolving kernel for density
in the whole outer core for target error levels of 0.3, 0.5, and
1% (from bottom to top). The heavy curve isR while the light
curves areM andK. UsingR in any of these cases to estimate
the mean density of the model in the outer core (as opposed to a
true boxcar) results in an error of less than 0.02%.

5. The density near the base of the mantle

We now consider the bottom 500 km of the lower
mantle. It should be noted that the models by and
large closely follow the Adams–Williamson condi-
tion and show no signs of an unusual density in-
crease near the base of the mantle. The exception
is model AK135 which was constructed in an un-
usual way and has enhanced density in the bottom
150 km of the lower mantle. While it is true that
this model provides by far the poorest fit to the
mode data, it is still within the range of linearity
since the local averages predicted using this model
agree well with local averages predicted using other
models.

The resolving kernels for various target error lev-
els are shown inFig. 8. Clearly, well-shaped ker-
nels are available for all target levels above 0.5%.
The median of the local averages for density at ei-
ther the 0.5% or 1% level is 5.465 Mg m−3 and is
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Fig. 8. Attempts to make a boxcar resolving kernel for density
in the bottom 500 km of the lower mantle for target error levels
of 0.3, 0.5, and 1% (from bottom to top). The heavy curve isR
while the light curves areM andK. Contamination is not totally
negligible for the 0.3% case. UsingR in either of the top two
cases to estimate the mean density of the model in this region (as
opposed to a true boxcar) results in an error of less than 0.05%.

known to±0.027 Mg m−3. The median of the mod-
els is 5.447 Mg m−3 (though values range from 5.433
to 5.476 Mg m−3. These results imply that the bottom
500 km of the lower mantle may be about 0.4% more
dense than the models though this difference is within
the observational uncertainties.

We also computed resolving kernels for the mean
density of the whole lower mantle (extending from
the 660 km discontinuity to the core–mantle bound-
ary). Not surprisingly, this can be done very accurately
and we got good resolving kernels for target error lev-
els of 0.3% (Fig. 9) leading to an estimate of mean
lower mantle density of 4.996±0.015 Mg m−3 as com-
pared to the models which had mean densities vary-
ing between 4.982 and 4.996 Mg m−3 with a median
of 4.987 Mg m−3. This result implies that the whole
lower mantle could be slightly denser than the models
so the value of excess density in the lowermost mantle
is likely to be less than 0.4%.

Fig. 9. Attempts to make a boxcar resolving kernel for density in
the whole lower mantle (extending from the 660 km discontinuity
to the core–mantle boundary) for target error levels of 0.3, 0.5,
and 1% (from bottom to top). The heavy curve isR while the
light curves areM and K. Using R in any of these cases to
estimate the mean density of the model in the lower mantle (as
opposed to a true boxcar) results in an error of less than 0.03%.

We believe these numbers put strong constraints
on the likely viability of a “hot abyssal layer”. In
Kellogg et al. (1999), a density constrast of 1% was
cited after competing compositional and thermal ef-
fects were taken into account. Our results indicate that
this may be too large by a factor of more than two.
It should be remembered that this result was obtained
for the degraded data set—non-linear inversions of the
complete mode dataset should put even tighter con-
straints on possible excess density in the lowermost
mantle.

6. Conclusions

We believe the results of this paper show that free
oscillation degenerate frequencies are capable of con-
straining density in the Earth to a useful precision.
The results of a linear analysis (with the errors on the
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mode frequencies degraded to ensure linearity) give
a new estimate of the density jump at the ICB of
0.82±0.18 Mg m−3, which is significantly larger than
the value used in previous calculations of the ther-
mal history of the Earth’s core. We also find that if,
on average, the bottom 500 km of the lower mantle
were acting as a “hot abyssal layer”, its density excess
would have to be less than 0.4%, which is about the
observational uncertainty we have on density in this
region. Whether such a layer would be dynamically
stable remains to be seen.
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