
Chapter 3

The Seismic Wave Equation

Using the stress and strain theory developed in the previous chapter, we now con-
struct and solve the seismic wave equation for elastic wave propagation in a uniform
whole space. We will show that two types of solutions are possible, corresponding
to compressional (P ) and shear (S) waves, and we will derive the equations for their
velocities that we presented in the last chapter. This will involve vector calculus
and complex numbers; some of the mathematics is reviewed in Appendix 2. For
simplicity, in this chapter we assume perfect elasticity with no energy loss in the
seismic waves from any intrinsic attenuation.

3.1 Introduction: The Wave Equation

To motivate our discussion, consider the one-dimensional wave equation

∂2u

∂t2
= c2

∂2u

∂x2
(3.1)

and its general solution
u(x, t) = f(x± ct), (3.2)

which represents waves of arbitrary shape propagating at velocity c in the positive
and negative x directions. This is a very common equation in physics and can be
used to describe, for example, the vibrations of a string or acoustic waves in a pipe.
The velocity of the wave is determined by the physical properties of the material
through which it propagates. In the case of a vibrating string, c2 = F/ρ where F is
the string tension force and ρ is the density.

The wave equation is classified as a hyperbolic equation in the theory of linear
partial differential equations. Hyperbolic equations are among the most challenging
to solve because sharp features in their solutions will persist and can reflect off
boundaries. Unlike, for example, the diffusion equation, solutions will be smooth
only if the initial conditions are smooth. This complicates both analytical and
numerical solution methods.

As we will see, the seismic wave equation is more complicated than equation
(3.1) because it is three dimensional and the link between force and displacement
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Figure 3.1: The force on the (x2, x3) face of an infinitesimal cube is given by t(x̂1) dx2 dx3,
the product of the traction vector and the surface area.

involves the full stress-strain relationship for an elastic solid. However, the P and S
seismic wave solutions share many characteristics with the solutions to the 1-D wave
equation. They involve pulses of arbitrary shape that travel at speeds determined
by the elastic properties and density of the medium, and these pulses are often
decomposed into harmonic wave solutions involving sine and cosine functions. Stein
and Wysession (2003, section 2.2) provide a useful review of the 1-D wave equation
as applied to a vibrating string, with analogies to seismic wave propagation in the
Earth.

3.2 The Momentum Equation

In the previous chapter, the stress, strain, and displacement fields were considered
in static equilibrium and unchanging with time. However, because seismic waves
are time-dependent phenomena that involve velocities and accelerations, we need to
account for the effect of momentum. We do this by applying Newton’s law (F = ma
from your freshman physics class) to a continuous medium.

Consider the forces on an infinitesimal cube in a (x1, x2, x3) coordinate system
(Figure 3.1). The forces on each surface of the cube are given by the product of the
traction vector and the surface area. For example, the force on the plane normal to
x1 is given by

F(x̂1) = t(x̂1) dx2 dx3

= τττ x̂1 dx2 dx3

=

 τ11τ21
τ31

 dx2 dx3, (3.3)

where F is the force vector, t is the traction vector, and τττ is the stress tensor. In
the case of a homogeneous stress field, there is no net force on the cube since the
forces on opposing sides will cancel out, that is, F(−x̂1) = −F(x̂1). Net force will
only be exerted on the cube if spatial gradients are present in the stress field. In
this case, the net force from the planes normal to x1 is

F(x̂1) =
∂

∂x1

 τ11τ21
τ31

 dx1 dx2 dx3, (3.4)
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and we can use index notation and the summation convention to express the total
force from the stress field on all the faces of the cube as

Fi =
3∑

j=1

∂τij
∂xj

dx1 dx2 dx3

= ∂jτij dx1 dx2 dx3. (3.5)

The djτij term is the divergence of the stress tensor (recall that summation conven-
tion means that this term is summed over j = 1, 2, 3). There may also exist a body
force on the cube that acts in proportion to the volume of material, that is,

F body
i = fi dx1 dx2 dx3. (3.6)

The mass of our infinitesimal cube is given by

m = ρ dx1 dx2 dx3, (3.7)

where ρ is the density. The acceleration of the cube is given by the second time
derivative of the displacement u. Substituting (3.5)–(3.7) into F = ma and canceling
the common factor of dx1 dx2 dx3, we obtain1

ρ
∂2ui

∂t2
= ∂jτij + fi. (3.8)

This is the fundamental equation that underlies much of seismology. It is called the
momentum equation or the equation of motion for a continuum. Each of the terms,
ui, τij and fi is a function of position x and time. The body force term f generally
consists of a gravity term fg and a source term fs. Gravity is an important factor at
very low frequencies in normal mode seismology, but it can generally be neglected
for body- and surface-wave calculations at typically observed wavelengths. We will
consider the effects of the source term fs later in this book (Chapter 9). In the
absence of body forces, we have the homogeneous equation of motion

ρ
∂2ui

∂t2
= ∂jτij , (3.9)

which governs seismic wave propagation outside of seismic source regions. Gener-
ating solutions to (3.8) or (3.9) for realistic Earth models is an important part of
seismology; such solutions provide the predicted ground motion at specific locations
at some distance from the source and are commonly termed synthetic seismograms.

If, on the other hand, we assume that the acceleration term in (3.8) is zero, the
result is the static equilibrium equation

∂jτij = −fi. (3.10)
1In expressing the acceleration term, we approximate the total derivatives of u with respect to

time with the partial derivatives of u with respect to time. That is, we make the small-deformation
approximation such that the terms in the total derivative containing the spatial derivatives of u can
be ignored. This is generally assumed valid in seismology, but the spatial derivatives (advection
terms) are very important in fluid mechanics.
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in which the body forces are balanced by the divergence of the stress tensor. This
equation is applicable to static deformation problems in geodesy, engineering and
many other fields.

3.3 The Seismic Wave Equation

In order to solve (3.9) we require a relationship between stress and strain so that
we can express τττ in terms of the displacement u. Recall the linear, isotropic stress–
strain relationship,

τij = λδijekk + 2µeij , (3.11)

where λ and µ are the Lamé parameters and the strain tensor is defined as

eij = 1
2(∂iuj + ∂jui). (3.12)

Substituting for eij in (3.11), we obtain

τij = λδij∂kuk + µ(∂iuj + ∂jui). (3.13)

Equations (3.9) and (3.13) provide a coupled set of equations for the displacement
and stress. These equations are sometimes used directly at this point to model
wave propagation in computer calculations by applying finite-difference techniques.
In these methods, the stresses and displacements are computed at a series of grid
points in the model, and the spatial and temporal derivatives are approximated
through numerical differencing. The great advantage of finite-difference schemes is
their relative simplicity and ability to handle Earth models of arbitrary complex-
ity. However, they are extremely computationally intensive and do not necessarily
provide physical insight regarding the behavior of the different wave types.

In the equations that follow, we will switch back and forth between vector nota-
tion and index notation. A brief review of vector calculus is given in Appendix B.
If we substitute (3.13) into (3.9), we obtain

ρ
∂2ui

∂t2
= ∂j [λδij∂kuk + µ(∂iuj + ∂jui)]

= ∂iλ∂kuk + λ∂i∂kuk + ∂jµ(∂iuj + ∂jui) + µ∂j∂iuj + µ∂j∂jui

= ∂iλ∂kuk + ∂jµ(∂iuj + ∂jui) + λ∂i∂kuk + µ∂i∂juj + µ∂j∂jui.

(3.14)

Defining ü = ∂2u/∂t2, we can write this in vector notation as

ρü = ∇λ(∇ · u) +∇µ · [∇u + (∇u)T ] + (λ+ µ)∇∇ · u + µ∇2u. (3.15)

We now use the vector identity

∇×∇× u = ∇∇ · u−∇2u (3.16)

to change this to a more convenient form. We have

∇2u = ∇∇ · u−∇×∇× u. (3.17)
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Substituting this into (3.15), we obtain

ρü = ∇λ(∇ · u) +∇µ · [∇u + (∇u)T ] + (λ+ 2µ)∇∇ · u− µ∇×∇× u. (3.18)

This is one form of the seismic wave equation. The first two terms on the right-hand
side (r.h.s.) involve gradients in the Lamé parameters themselves and are nonzero
whenever the material is inhomogeneous (i.e., contains velocity gradients). Most
non trivial Earth models for which we might wish to compute synthetic seismo-
grams contain such gradients. However, including these factors makes the equations
very complicated and difficult to solve efficiently. Thus, most practical synthetic
seismogram methods ignore these terms, using one of two different approaches.

First, if velocity is only a function of depth, then the material can be modeled
as a series of homogeneous layers. Within each layer, there are no gradients in the
Lamé parameters and so these terms go to zero. The different solutions within each
layer are linked by calculating the reflection and transmission coefficients for waves
at both sides of the interface separating the layers. The effects of a continuous
velocity gradient can be simulated by considering a “staircase” model with many
thin layers. As the number of layers increases, these results can be shown to con-
verge to the continuous gradient case (more layers are needed at higher frequencies).
This approach forms the basis for many techniques for computing predicted seis-
mic motions from one-dimensional Earth models; we will term these homogeneous-
layer methods. They are particularly useful for studying surface waves and low- to
medium-frequency body waves. However, at high frequencies they become relatively
inefficient because large numbers of layers are necessary for accurate modeling.

Second, it can be shown that the strength of these gradient terms varies as
1/ω, where ω is frequency, and thus at high frequencies these terms will tend to
zero. This approximation is made in most ray-theoretical methods, in which it is
assumed that the frequencies are sufficiently high that the 1/ω terms are unim-
portant. However, note that at any given frequency this approximation will break
down if the velocity gradients in the material become steep enough. At velocity
discontinuities between regions of shallow gradients, the approximation cannot be
used directly, but the solutions above and below the discontinuities can be patched
together through the use of reflection and transmission coefficients. The distinction
between the homogeneous-layer and ray-theoretical approaches is often important
and will be emphasized later in this book.

If we ignore the gradient terms, the momentum equation for homogeneous media
becomes

ρü = (λ+ 2µ)∇∇ · u− µ∇×∇× u. (3.19)

This is a standard form for the seismic wave equation in homogeneous media and
forms the basis for most body wave synthetic seismogram methods. However, it is
important to remember that it is an approximate expression, which has neglected
the gravity and velocity gradient terms and has assumed a linear, isotropic Earth
model.

We can separate this equation into solutions for P -waves and S-waves by taking
the divergence and curl, respectively. Taking the divergence of (3.19) and using the
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vector identity ∇ · (∇×ΨΨΨ) = 0, we obtain:

∂2(∇ · u)
∂t2

=
λ+ 2µ
ρ

∇2(∇ · u) (3.20)

or

∇2(∇ · u)− 1
α2

∂2(∇ · u)
∂t2

= 0, (3.21)

where the P -wave velocity, α, is given by

α2 =
λ+ 2µ
ρ

. (3.22)

Taking the curl of (3.19) and using the vector identity ∇× (∇φ) = 0, we obtain:

∂2(∇× u)
∂t2

= −µ
ρ
∇×∇× (∇× u). (3.23)

Using the vector identity (3.16) and ∇ · (∇× u) = 0, this becomes

∂2(∇× u)
∂t2

=
µ

ρ
∇2(∇× u) (3.24)

or

∇2(∇× u)− 1
β2

∂2(∇× u)
∂t2

= 0, (3.25)

where the S-wave velocity, β, is given by

β2 =
µ

ρ
. (3.26)

We can use (3.22) and (3.26) to rewrite the elastic wave equation (3.18) directly
in terms of the P and S velocities:

ü = α2∇∇ · u− β2∇×∇× u. (3.27)

3.3.1 Potentials

The displacement u is often expressed in terms of the P -wave scalar potential φ
and S-wave vector potential ΨΨΨ, using the Helmholtz decomposition theorem (e.g.,
p. 67–69 of Aki and Richards, 2002), i.e.,

u = ∇φ+∇×ΨΨΨ, ∇ ·ΨΨΨ = 0. (3.28)

We then have
∇ · u = ∇2φ (3.29)

and

∇× u = ∇×∇×ΨΨΨ

= ∇∇ ·ΨΨΨ−∇2ΨΨΨ (from 3.16)
= −∇2ΨΨΨ (since ∇ ·ΨΨΨ = 0). (3.30)
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Table 3.1: Harmonic wave parameters.
Angular frequency ω time−1 ω = 2πf = 2π

T = ck

Frequency f time−1 f = ω
2π = 1

T = c
Λ

Period T time T = 1
f = 2π

ω = Λ
c

Velocity c distance time−1 c = Λ
T = fΛ = ω

k

Wavelength Λ distance Λ = c
f = cT = 2π

k

Wavenumber k distance−1 k = ω
c = 2π

Λ = 2πf
c = 2π

cT

Motivated by (3.21) and (3.25), we require that these potentials also satisfy

∇2φ− 1
α2

∂2φ

∂t2
= 0, (3.31)

∇2ΨΨΨ− 1
β2

∂2ΨΨΨ
∂t2

= 0. (3.32)

After solving these equations for φ and ΨΨΨ, the P -wave displacement is given by the
gradient of φ and the S-wave displacement is given by the curl of ΨΨΨ, following (3.28).

3.4 Plane Waves

At this point it is helpful to introduce the concept of a plane wave. This is a
solution to the wave equation in which the displacement varies only in the direction
of wave propagation and is constant in the directions orthogonal to the propagation
direction. For example, for a plane wave traveling along the x axis, the displacement
may be expressed as

u(x, t) = f(t± x/c), (3.33)

where c is the velocity of the wave, f is any arbitrary function (a vector function is
required to express the polarization of the wave), and the waves are propagating in
either the +x or −x direction. The displacement does not vary with y or z; the wave
extends to infinity in these directions. If f(t) is a discrete pulse, then u assumes
the form of a displacement pulse traveling as a planar wavefront. More generally,
displacement at position vector x for a plane wave propagating in the unit direction
ŝ may be expressed as

u(x, t) = f(t− ŝ · x/c) (3.34)
= f(t− s · x), (3.35)

where s = ŝ/c is the slowness vector, whose magnitude is the reciprocal of the
velocity.

Since seismic energy is usually radiated from localized sources, seismic wave-
fronts are always curved to some extent; however, at sufficiently large distances
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from the source the wavefront becomes flat enough that a plane wave approxima-
tion becomes locally valid. Furthermore, many techniques for solving the seismic
wave equation involve expressing the complete solution as a sum of plane waves of
differing propagation angles. Often the time dependence is also removed from the
equations by transforming into the frequency domain. In this case the displacement
for a particular angular frequency ω may be expressed as

u(x, t) = A(ω)e−iω(t−s·x) (3.36)
= A(ω)e−i(ωt−k·x), (3.37)

where k = ωs = (ω/c)̂s is termed the wavenumber vector. We will use complex
numbers to represent harmonic waves throughout this book; details of how this
works are reviewed in Appendix B. This may be termed a monochromatic plane
wave; it is also sometimes called the harmonic or steady-state plane wave solution.
Other parameters used to describe such a wave are the wavenumber k = |k| = ω/c,
the frequency f = ω/(2π), the period T = 1/f , and the wavelength Λ = cT .
Equations relating the various harmonic wave parameters are summarized in Table
3.1.

3.4.1 Example: Harmonic plane wave equation

What is the equation for the displacement of a 1 Hz P -wave propagating in
the +x direction at 6 km/s? In this case ω = 2πf , where f = 1 Hz, and
thus ω = 2π. The slowness vector is in the direction of the x-axis and thus
ŝ = x̂ = (1, 0, 0) and s = (1/c, 0, 0) = (1/6, 0, 0) s/km. We can thus express
(3.36) as

u(x, t) = u(x, t) = Ae−2iπ(t−x/6)

where t is in s and x is in km. As we will see in the next section, P waves
are polarized in the direction of wave propagation, so u = (ux, 0, 0) and we can
express this more simply as

ux(x, t) = Ae−2iπ(t−x/6)

In general, the coefficient A is complex to permit any desired phase at x = 0.
As described in Appendix B, the real part must be taken for this equation to
have a physical meaning. An alternative form is

ux(x, t) = a cos [2π(t− x/6)− φ]

where a is the amplitude and φ is the phase at x = 0 (see Figure B.3).

3.5 Polarizations of P and S Waves

Consider plane P -waves propagating in the x direction. From (3.31) we have

α2∂xxφ = ∂ttφ. (3.38)
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A general solution to (3.38) can be written as

φ = φ0(t± x/α), (3.39)

where a minus sign corresponds to propagation in the +x direction and a plus sign
denotes propagation in the −x direction. Because u = ∇φ, we have

ux = ∂xφ,

uy = 0, (3.40)
uz = 0.

Note that for a plane wave propagating in the x direction there is no change in
the y and z directions, and so the spatial derivatives ∂y and ∂z are zero. For P -
waves, the only displacement occurs in the direction of propagation along the x
axis. Such wave motion is termed “longitudinal.” Also, because ∇ × ∇φ = 0, the
motion is curl-free or “irrotational.” Since P -waves introduce volume changes in
the material (∇ ·u 6= 0), they can also be termed “compressional” or “dilatational.”
However, note that P -waves involve shearing as well as compression; this is why
the P velocity is sensitive to both the bulk and shear moduli. Particle motion for a
harmonic P -wave is shown in Figure 3.2.

Now consider a plane S-wave propagating in the positive x direction. The vector
potential becomes

ΨΨΨ = Ψx(t− x/β)x̂ + Ψy(t− x/β)ŷ + Ψz(t− x/β)ẑ. (3.41)

The displacement is

ux = (∇×ΨΨΨ)x = ∂yΨz − ∂zΨy = 0,
uy = (∇×ΨΨΨ)y = ∂zΨx − ∂xΨz = −∂xΨz, (3.42)
uz = (∇×ΨΨΨ)z = ∂xΨy − ∂yΨx = ∂xΨy,

where again we have used ∂y = ∂z = 0, thus giving

u = −∂xΨzŷ + ∂xΨyẑ. (3.43)

The motion is in the y and z directions, perpendicular to the propagation direction.
S-wave particle motion is often divided into two components: the motion within a
vertical plane through the propagation vector (SV -waves) and the horizontal motion
in the direction perpendicular to this plane (SH-waves). Because ∇ · u = ∇ · (∇×
ΨΨΨ) = 0, the motion is pure shear without any volume change (hence the name shear
waves). Particle motion for a harmonic shear wave polarized in the vertical direction
(SV -wave) is illustrated in Figure 3.2.

3.6 Spherical Waves

Another solution to the scalar wave equation (3.31) for the P -wave potential φ is
possible if we assume spherical symmetry. In spherical coordinates, the Laplacian
operator is

∇2φ(r) =
1
r2

∂

∂r

[
r2
∂φ

∂r

]
, (3.44)
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Figure 3.2: Displacements occurring from a harmonic plane P -wave (top) and S-wave
(bottom) traveling horizontally across the page. S-wave propagation is pure shear with no
volume change, whereas P -waves involve both a volume change and shearing (change in
shape) in the material. Strains are highly exaggerated compared to actual seismic strains
in the Earth.

where we have dropped the angular derivatives because of the spherical symmetry.
Using this expression in (3.31), we have

1
r2

∂

∂r

[
r2
∂φ

∂r

]
− 1
α2

∂2φ

∂t2
= 0. (3.45)

Solutions to this equation outside the point r = 0 may be expressed as

φ(r, t) =
f(t± r/α)

r
. (3.46)

Note that this is identical to the plane wave equation (3.33), except for the factor
of 1/r. Inward and outward propagating waves are specified by the + and − signs
respectively. Since this expression is usually used to model waves radiating away
from a point source, the inward propagating solution is normally ignored. In this
case the 1/r term represents a decay in the wave amplitude with range, a geometrical
spreading factor that we will explore further in Chapter 6.

Equation (3.46) is not a valid solution to (3.45) at r = 0. However, it can be
shown (e.g., Aki and Richards, 2002, Section 4.1) that (3.46) is the solution to the
inhomogeneous wave equation

∇2φ(r)− 1
α2

∂2φ

∂t2
= −4πδ(r)f(t), (3.47)

where the delta function δ(r) is zero everywhere except r = 0 and has a volume
integral of one. The factor 4πδ(r)f(t) represents the source–time function at the
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origin. We will return to this equation when we discuss seismic source theory in
Chapter 9.

3.7 Methods for Computing Synthetic Seismograms†

A large part of seismology involves devising and implementing techniques for com-
puting synthetic seismograms for realistic Earth models. In general, our goal is to
calculate what would be recorded by a seismograph at a specified receiver location,
given an exact specification of the seismic source and the Earth model through
which the seismic waves propagate. This is a well-defined forward problem that,
in principle, can be solved exactly. However, errors in the synthetic seismograms
often occur in practical applications. These inaccuracies can be be separated into
two parts:

1. Inaccuracies arising from approximations in the theory used to compute the
synthetic seismograms. Examples of this would include many applications of
ray theory which do not properly account for head waves, diffracted waves,
or the coupling between different waves types at long periods. Another com-
putational error is the grid dispersion that occurs in most finite difference
schemes.

2. Errors caused by using a simplified Earth or source model. In this case the
synthetic seismogram may be exact for the simplied model, but the model is
an inadequate representation of the real problem. These simplifications might
be necessary in order to apply a particular numerical technique, or might
result from ignorance of many of the details of the model. Examples would
include the use of 1-D models that do not fully account for 3-D structure, the
assumption of a point source rather than a finite rupture, and neglecting the
effects of attenuation or anisotropy in the calculations.

The first category of errors may be addressed by applying a more exact algorithm,
although in practice limits on computing resources may prevent achieving the desired
accuracy in the case of complicated models. The second category is more serious
because often one simply does not know the properties of the Earth well enough
to be able to model every wiggle in the observed seismograms. This is particularly
true at high frequencies (0.5 Hz and above). For teleseismic arrivals, long-period
body waves (15–50 s period) and surface waves (40–300 s period) can usually be
fit well with current Earth models, whereas the coda of high-frequency body wave
arrivals can only be modeled statistically (fitting the envelope function but not the
individual wiggles).

Because of the linearity of the problem and the superposition principle (in which
distributed sources can be described as the sum of multiple point sources), there is
no great difficulty in modeling even very complicated sources (inverting for these
sources, is, of course, far more difficult, but here we are only concerned with the
forward problem). If the source can be exactly specified, then computing synthetics
for a distributed source is only slightly more complicated than for a simple point



48 CHAPTER 3. THE SEISMIC WAVE EQUATION

source. By far the most difficult part in computing synthetic seismgrams is solving
for the propogation effects through realistic velocity structures. Only for a few
grossly simplified models (e.g., whole space or half-spaces) are analytical solutions
possible.

The part of the solution that connects the force distribution at the source with
the displacements at the receiver is termed the elastodynamic Green’s function, and
will be discussed in greater detail in Chapter 9. Computation of the Green’s function
is the key part of the synthetic seismogram calculation because this function must
take into account all of the elastic properties of the material and the appropriate
boundary conditions.

There are a large number of different methods for computing synthetic seismo-
grams. Most of these fall into the following categories:

1. Finite-difference and finite-element methods that use computer power to solve
the wave equation over a discrete set of grid points or model elements. These
have the great advantage of being able to handle models of arbitrary complex-
ity. Their computational cost grows with the number of required grid points;
more points are required for 3-D models (vs. 2-D) and for higher frequencies.
These methods are discussed in more detail in the next section.

2. Ray-theoretical methods in which ray geometries are explicitly specified and
ray paths are computed. These methods include simple (or geometrical) ray
theory, WKBJ, and so-called “generalized” ray theory. They are most useful at
high frequencies for which the ray-theoretical approximation is most accurate.
They are most simply applied to 1-D Earth models but can be generalized to
3-D models.

3. Homogeneous layer methods in which the model consists of a series of hori-
zontal layers with constant properties within each layer. Matrix methods are
then used to connect the solutions between layers. Examples of this approach
include “reflectivity” and “wavenumber integration.” These methods yield an
exact solution but can become moderately computationally intensive at high
frequencies because a large number of layers are required to accurately simu-
late continuous velocity gradients. Unlike finite-difference and ray-theoretical
methods, homogeneous-layer techniques are restricted to 1-D Earth models.
However, spherically symmetric models can be computed using the Flat Earth
Transformation.

4. Normal mode summation methods in which the standing waves (eigenvectors)
of the spherical Earth are computed and then summed to generate synthetic
seismograms. This is the most natural and complete way to compute synthetic
seismograms for the spherical Earth, but is computationally intensive at high
frequencies. Generalization to 3-D Earth models requires including coupling
between modes; this is generally done using asymptotic approximations and
greatly increases the complexity of the algorithm.

There is no single “best” way to compute synthetic seismograms as each method
has its own advantages and disadvantages. The method of choice will depend upon
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the particular problem to be addressed and the available computer power; thus
it is useful to be aware of the full repertoire of techniques. This book will cover
only how relatively simple ray-theoretical synthetic seismograms can be computed
for 1-D Earth models. For details regarding ray-theoretical and homogeneous-layer
methods, see Kennett (2001) and Chapman (2004). For normal mode methods, see
Dahlen and Tromp (1998).

3.8 The Future of Seismology?†

Increasing computer capabilities now make possible ambitious numerical simulations
of seismic wave propagation that were impractical only a few years ago and this trend
is likely to continue for many decades. These calculations involve finite-difference or
finite-element methods that approximate the continuum of elastic properties with
a large number of discrete values or model elements and solve the wave equation
numerically over a series of discrete time steps. They provide a complete image
of the wavefield at each point in the model for every time step, as illustrated in
Figure 3.3, which shows a snapshot at 10 minutes of the SH wavefield in the mantle
for a source at 500 km (Thorne et al., 2007). Finite difference methods specify
the model at a series of grid points and approximate the spatial and temporal
derivatives by using the model values at nearby grid points. Finite element methods
divide the model into a series of volume elements with specified properties and
match the appropriate boundary conditions among adjacent elements. Historically,
because of their simplicity, finite-difference methods have been used in seismology
more often than finite elements. However, finite-difference algorithms can have
difficulty correctly handling boundary conditions at sharp interfaces, including the
irregular topography at the Earth’s surface, for which finite-element schemes are
more naturally suited.

Discrete modeling approaches can accurately compute seismograms for compli-
cated 3-D models of Earth structure, provided the gridding or meshing scheme has
sufficient resolution. Complicated analytical techniques are not required, although
the speed of the algorithm depends upon the skill of the computer programmer
in developing efficient code. Typically, a certain number of grid points or model
elements are required per seismic wavelength for accurate results, with the exact
number depending upon the specific algorithm. In three dimensions, the number of
grid points grows inversely as the cube of the grid spacing and number of required
time steps normally also increases. Because of this, computational requirements
increase rapidly with decreasing seismic wavelength, with the most challenging cal-
culations being at high frequencies and the greatest required grid densities occurring
in the slowest parts of the model.

Finite difference methods vary depending upon how the temporal and spatial
derivatives in these equations are calculated. Simple first-order differencing schemes
for the spatial derivatives are fast and easy to program, but require more grid
points per wavelength to achieve accuracy comparable to higher-order differencing
schemes. Many finite-difference programs use the staggered grid approach in which
the velocities and stresses are computed at different grid points.
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ScS

sS
S

Figure 3.3: The SH-velocity wavefield in the mantle after 10 minutes for a source at 500
km depth (star), adapted from a figure in Thorne et al. (2007). This axi-symmetric 2-D
finite-difference calculation used the PREM velocity model. The major seismic phases are
labeled (see Chapter 4); the lower amplitude phases are mainly reflections off upper-mantle
discontinuities and an assumed discontinuity 264 km above the core-mantle boundary.

A few general points to keep in mind:

1. Finite-difference programs run most efficiently if their arrays fit into memory
and thus machines with large memories are desirable. Higher-order finite-
difference schemes generally have an advantage because fewer grid points per
wavelength are required for accurate results, thus reducing the size of the
arrays.

2. Simple first-order differencing schemes require more grid points per wavelength
than higher-order schemes. A commonly used “rule of thumb” is that first-
order differencing algorithms require about 20 grid points per wavelength, but
even this is not sufficient if the calculation is performed for a large model that
spans many wavelengths. So called psuedo-spectral methods are equivalent
to very high order differencing methods and in principle require the smallest
number of grid points per wavelength (approaching 2 in certain idealized sit-
uations). However, models with sharp velocity discontinuities often require
more grid points, so much of the advantage of the spectral methods is lost in
this case.

3. An important aspect of finite-difference and finite-element methods is devising
absorbing boundary conditions to prevent annoying reflections from the edges
of the model. This is a nontrivial problem and many papers have been written
discussing various techniques. Many of these methods work adequately for
waves hitting the boundaries at near normal incidence, but have problems for
grazing incidence angles.
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Figure 3.4: The meshing scheme used by the Komatitsch et al. (2002, 2005) implementation
of the spectral element method. The spherical Earth is decomposed into six “cubical” blocks.
The right plot shows how the blocks join and how the number of elements increases near
the surface.

Finite-element programs often have advantages over finite differences in apply-
ing boundary conditions. Currently the most developed finite-element program
in global seismology is the implementation of the spectral-element method by Ko-
matitsch, Tromp and coworkers (e.g., Komatitsch et al., 2002, 2005), which explicitly
includes the free-surface and fluid/solid boundary conditions at the core-mantle and
inner-core boundaries. This program is designed to run in parallel on large high-
performance computing clusters. It uses a variable size meshing scheme for the en-
tire Earth that maintains a relatively constant number of grid points per wavelength
(see Figure 3.4). The method includes the effects of general anisotropy, anelastic-
ity (attenuation), surface topography, ellipticity, rotation, and self-gravitation. As
implemented, the method requires an average of 5 grid points per wavelength for
many applications. The algorithm has been validated through comparisons with
synthetics computed using normal mode summation.

Numbers cited by Komatitsch et al. (2005) for calculations on the Earth Simu-
lator at the Japan Agency for Marine Earth Science and Technology (JAMSTEC)
provide some perspective on the computational requirements. Using 48 nodes (with
64 gigaflops and 16 gigabytes of memory per node), a global simulation can model
wave periods down to 9 s in about 10 hours of computer time. Shorter periods
can be reached in the same time if more nodes are used. This calculation provides
synthetic seismograms from a single earthquake to any number of desired receivers.
The Earth model itself can be arbitrarily complicated with calculations for general
3-D velocity and density variations taking no longer than those for 1-D reference
models.

Large-scale numerical simulations are also important for modeling strong ground
motions in and around sedimentary basins from large earthquakes and a number of
groups are now performing these calculations (e.g., Akcelik et al., 2003; Olsen et
al., 2006). A challenging aspect of these problems is the very slow shear velocities
observed in shallow sedimentary layers. For example, in the Los Angeles basin the
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average shear velocity approaches 200 m/s at the surface (e.g., Magistrale et al.,
2000). These calculations are valuable because they show how focusing effects from
rupture directivity and basin geometry can lead to large variations in expected wave
amplitudes.

As computer speed and memory size increases, these numerical methods will
become practical even on desktop machines and eventually it will be possible to
routinely compute broadband synthetics for general 3-D Earth models. In time,
these computer-intensive algorithms will probably replace many of the alternative
synthetic seismogram methods. However there will still be a need for the techniques
of classical seismology, such as ray theory and surface wave dispersion analysis, in
order to understand and interpret the results that the computers provide. Ultimately
the challenge will be to devise new methods of data analysis and inversion that will
fully exploit the computational capabilities that are rapidly coming to the field.

3.9 Equations for 2-D Isotropic Finite Differences†

As an example of a discrete modeling method, this section presents equations for
simple isotropic 1-D and 2-D finite differences. Much of this material is adapted
from section 13.6 of the 2nd volume of the first edition of Aki and Richards (1980).
We begin with the momentum equation:

ρ
∂2u
∂t2

= ∇ · τττ (3.48)

Now let u = (ux, uy, uz) = (u, v, w) and recall that (∇ · τττ)i = ∂jτij . For the two-
dimensional case of SH-waves propagating in the x-z plane, displacement only occurs
in the y-direction (i.e. u = (0, v, 0)) and we can write:

ρ
∂2v

∂t2
= ∂jτyj =

∂τyx

∂x
+
∂τyz

∂z
(3.49)

Note that ∂
∂y = 0 for the two-dimensional problem. Now recall (3.13) which relates

stress to displacement for isotropic media:

τij = λδij∂kuk + µ(∂iuj + ∂jui) (3.50)

Using this equation we can obtain expressions for τyx and τyz:

τyx = µ ∂v
∂x (3.51)

τyz = µ∂v
∂z

Substituting into (3.49), we obtain:

ρ
∂2v

∂t2
=

∂

∂x

[
µ
∂v

∂x

]
+

∂

∂z

[
µ
∂v

∂z

]
(3.52)

Note that for one-dimensional wave propagation in the x-direction ∂
∂z = 0 and the

SH equation reduces to:

ρ(x)
∂2v

∂t2
=

∂

∂x

[
µ(x)

∂v

∂x

]
(3.53)



3.9. EQUATIONS FOR 2-D ISOTROPIC FINITE DIFFERENCES† 53

This is equivalent to equation (13.129) in Aki and Richards (1980). A similar equa-
tion exists for one-dimensional P -wave propagation if the µ(x) is replaced with
λ(x) + 2µ(x) and the displacements in the y-direction (v) are replaced with dis-
placements in the x-direction (u).

We can avoid the double time derivative and the space derivatives of µ if we
use the particle velocity v̇ and stress τ = µ∂v/∂x as variables. We then have the
simultaneous equations:

∂v̇

∂t
=

1
ρ(x)

∂τ

∂x
(3.54)

∂τ

∂t
= µ(x)

∂v̇

∂x

A solution to these equations can be obtained directly using finite-difference
approximations for the derivatives. In order to design a stable finite-difference
algorithm for the wave equation, it is important to use centered finite-difference
operators. To see this, consider the Taylor series expansion of a function φ(x)

φ(x+∆x) = φ(x)+
∂φ

∂x
∆x+

1
2
∂2φ

∂x2
(∆x)2+

1
6
∂3φ

∂x3
(∆x)3+higher order terms (3.55)

If we solve this equation for ∂φ/∂x, we obtain

∂φ

∂x
=

1
∆x

[
φ(x+ ∆x)− φ(x)

]
− 1

2
∂2φ

∂x2
∆x− 1

6
∂3φ

∂x3
(∆x)2 − . . . (3.56)

and we see that the simple approximation

∂φ

∂x
≈ 1

∆x

[
φ(x+ ∆x)− φ(x)

]
(3.57)

will have a leading truncation error proportional to ∆x. To obtain a better approx-
imation, consider the expansion for φ(x−∆x)

φ(x−∆x) = φ(x)− ∂φ
∂x

∆x+
1
2
∂2φ

∂x2
(∆x)2− 1

6
∂3φ

∂x3
(∆x)3+higher order terms (3.58)

Solving for ∂φ/∂x, we obtain

∂φ

∂x
=

1
∆x

[
φ(x)− φ(x−∆x)

]
+

1
2
∂2φ

∂x2
∆x− 1

6
∂3φ

∂x3
(∆x)2 − . . . (3.59)

Averaging (3.56) and (3.59), we obtain

∂φ

∂x
=

1
2∆x

[
φ(x+ ∆x)− φ(x−∆x)

]
− 1

3
∂3φ

∂x3
(∆x)2 − . . . (3.60)

and we see that the central difference formula

∂φ

∂x
=

1
2∆x

[
φ(x+ ∆x)− φ(x−∆x)

]
(3.61)
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has an error of order (∆x)2. For small values of ∆x, these errors will be much
smaller than those obtained using (3.57). Similarly, the second derivative of φ can
be computed by summing (3.55) and (3.58) to obtain

∂2φ

∂x2
=

1
(∆x)2

[
φ(x+ ∆x)− 2φ(x) + φ(x−∆x)

]
(3.62)

which also has error of order (∆x)2.

t
i+1

i

j-1 j j+1

∆t

∆x

x

t

i+1

i

j-1/2 j j+1/2

∆t

∆x

x

i+1/2

i-1/2

v
τ

(a) (b)

Figure 3.5: (a) A simple 1-D finite-difference gridding scheme. (b) A staggered grid in
which the velocities and stresses are stored at different points.

To show how a centered finite-difference approach can be used to solve (3.54),
consider Figure 3.5a, which shows the xt plane sampled at points (i∆t, j∆x), where
i and j are integers. We can then write

v̇i+1
j − v̇i−1

j

2∆t
=

1
ρj

τ i
j+1 − τ i

j−1

2∆x
(3.63)

τ i+1
j − τ i−1

j

2∆t
= µj

v̇i
j+1 − v̇i

j−1

2∆x

This approach will be stable provided the time-mesh interval ∆t is smaller than or
equal to ∆x/cj , where cj =

√
µj/ρj is the local wave velocity.

An even better algorithm uses a staggered-grid approach (e.g., Virieux, 1986) in
which the velocities and stresses are computed at different grid points, offset by half
a grid length in both x and t (see Figure 3.5b). In this case, we have

v̇
i+

1
2

j − v̇
i−1

2
j

∆t
=

1
ρj

τ i

j+
1
2

− τ i

j−1
2

∆x
(3.64)

τ i+1
j+1/2 − τ i

j+1/2

∆t
= µ

j+
1
2

v̇
i+

1
2

j+1 − v̇
i+

1
2

j

∆x



3.9. EQUATIONS FOR 2-D ISOTROPIC FINITE DIFFERENCES† 55

As discussed in Aki and Richards (1980, p. 777), the error in this approximation is
four times smaller than in (3.63) because the sampling interval has been halved.

Now let us consider the two-dimensional P-SV system. In this case u = (u, 0, w)
and we can write:

ρ
∂2u

∂t2
= ∂jτxj =

∂τxx

∂x
+
∂τxz

∂z
(3.65)

ρ
∂2w

∂t2
= ∂jτzj =

∂τzx

∂x
+
∂τzz

∂z

Using (3.50) we can obtain expressions for τxx, τxz, and τzz:

τxx = λ

[
∂u

∂x
+
∂w

∂z

]
+ µ

[
2
∂u

∂x

]
= (λ+ 2µ)

∂u

∂x
+ λ

∂w

∂z

τxz = µ

[
∂u

∂z
+
∂w

∂x

]
(3.66)

τzz = λ

[
∂u

∂x
+
∂w

∂z

]
+ µ

[
2
∂w

∂z

]
= (λ+ 2µ)

∂w

∂z
+ λ

∂u

∂x

Equations (3.49) and (3.51) are a coupled system of equations for two-dimensional
SH-wave propagation, while (3.65) and (3.66) are the equations for P-SV wave propa-
gation. As in the one-dimensional case, it is often convenient to take time derivatives
of the equations for the stress (3.51) and (3.66), so that we can express everything
in terms of (u̇, v̇, ẇ) = ∂u

∂t . In this case the SH equations become:

ρ
∂v̇

∂t
=

∂τyx

∂x
+
∂τyz

∂z
∂τyx

∂t
= µ

∂v̇

∂x
(3.67)

∂τyz

∂t
= µ

∂v̇

∂z

and the P-SV equations become:

ρ
∂u̇

∂t
=

∂τxx

∂x
+
∂τxz

∂z

ρ
∂ẇ

∂t
=

∂τzx

∂x
+
∂τzz

∂z
∂τxx

∂t
= (λ+ 2µ)

∂u̇

∂x
+ λ

∂ẇ

∂z
(3.68)

∂τxz

∂t
= µ

[
∂u̇

∂z
+
∂ẇ

∂x

]
∂τzz

∂t
= (λ+ 2µ)

∂ẇ

∂z
+ λ

∂u̇

∂x
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These are first-order systems of equations in velocity and stress which can be solved
numerically. In this case, the elastic properties, ρ, λ, and µ are specified at a series
of model grid points. With suitable starting conditions, the velocities and stresses
are also defined at grid points. The program then calculates the required spatial
derivatives of the stresses in order to compute the velocities at time t + ∆t. The
spatial derivatives of these velocites then allow the computation of new values for
the stresses. This cycle is then repeated.

The global finite-difference calculation plotted in Figure 3.3 was performed using
an axi-symmetric SH-wave algorithm developed and implemented by Igel and Weber
(1995), Thorne et al. (2007) and Jahnke et al. (2008). It uses a staggered grid, with
an eight-point operator to compute the spatial derivatives, and can be run on parallel
computers with distributed memory.

3.10 EXERCISES

1. Period T is to angular frequency ω as wavelength Λ is to: (a) wavenumber k,
(b) velocity c, (c) frequency f , (d) time t, (e) none of the above.

2. Figure 3.6 plots a harmonic plane wave at t = 0, traveling in the x direction at
5 km/s. (a) Write down an equation for this wave that describes displacement,
u, as a function of x and t. (b) What is the maximum strain for this wave?

Figure 3.6: Displacement of a harmonic wave at t = 0 as a function of distance.

3. Consider two types of monochromatic plane waves propagating in the x di-
rection in a uniform medium: (a) P -wave in which ux = A sin(ωt − kx), (b)
S-wave with displacements in the y direction, i.e., uy = A sin(ωt − kx). For
each case, derive expressions for the nonzero components of the stress tensor.
Refer to (2.17) to get the components of the strain tensor; then use (2.30) to
obtain the stress components.

4. Assume harmonic P -waves are traveling through a solid with α = 10 km/s. If
the maximum strain is 10−8, what is the maximum particle displacement for
waves with periods of: (a) 1 s, (b) 10 s, (c) 100 s?
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5. Is it possible to have spherical symmetry for S-waves propagating away from a
point source? Under what conditions could an explosive source generate shear
waves?

6. Show that (3.46) satisfies (3.45) for r 6= 0.

7. (COMPUTER) In the case of plane-wave propagation in the x direction within
a uniform medium, the homogeneous momentum equation (3.9) for shear
waves can be expressed as

∂2u

∂t2
= β2∂

2u

∂x2
,

where u is the displacement. Write a computer program that uses finite differ-
ences to solve this equation for a bar 100 km in length, assuming β = 4 km/s.
Use dx = 1 km for the length spacing and dt = 0.1 s for the time spacing.
Assume a source–time function at u(50 km) of the form

u50(t) = sin2(πt/5), 0 < t < 5 s.

Apply a stress-free boundary condition at u(0 km) and a fixed boundary con-
dition at u(100 km). Approximate the second derivatives using the finite
difference scheme:

∂2u

∂x2
=
ui+1 − 2ui + ui−1

dx2
.

Plot u(x) at 4 s intervals from 1 to 33 s. Verify that the pulses travel at
velocities of 4 km/s. What happens to the reflected pulse at each end point?
What happens when the pulses cross?

Hint: Here is the key part of a FORTRAN program to solve this problem:

(initialize t, dx, dt, tlen, beta and u1,u2,u3 arrays)
10 t=t+dt

do i=2,100
rhs=beta**2*(u2(i+1)-2.*u2(i)+u2(i-1))/dx**2
u3(i)=dt**2*rhs+2.*u2(i)-u1(i)

enddo
u3(1)=u3(2)
u3(101)=0.
if (t.le.tlen) then

u3(51)=sin(3.1415927*t/tlen)**2
end if
do i=1,101

u1(i)=u2(i)
u2(i)=u3(i)

enddo
(output u2 at desired intervals, stop when t is big enough)

go to 10
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