
Reynold’s transport theorem

Start with the most general theorem, which is Reynold’s transport theorem for a fixed control
volume.

d

dt

∫
Ω

ρφdΩ =
∂

∂t

∫
Ω

ρφdΩ +

∫
S

ρφu · n̂dS (1)

the LHS is the total change of φ for a control volume which equals the time rate of change of
φ inside the control volume plus the net flux of φ through the control volume.

Conservation of Mass

In order to consider the Conservation of mass, set φ =1, which gives

d

dt

∫
Ω

ρdΩ =
∂

∂t

∫
Ω

ρdΩ +

∫
S

ρu · n̂dS (2)

the LHS must equal zero due to conservation of mass. The ∂
∂t

can go inside the integral because
Ω doesn’t depend on t and we can use Green’s theorem (Divergence theorem) to convert the
surface integral into a volume integral. Now the equation becomes

0 =

∫
Ω

∂

∂t
ρdΩ +

∫
Ω

∇ · (ρu)dΩ =

∫
Ω

(
∂ρ

∂t
+ ∇ · (ρu)

)
dΩ (3)

Now because Ω can be any arbitrary control volume, the expression inside the parentheses must
be always true so we can drop the integral. We now have an equation for mass in a compressible
fluid where ρ is not assumed to be uniform

0 =
∂ρ

∂t
+ ∇ · (ρu) (4)

We can use the product rule to expand the
(
∂ρ
∂t

+ ∇ · (ρu)
)

term into two terms, u ·∇ρ+ρ∇ ·u.
Rewriting we get

0 =
∂ρ

∂t
+ u ·∇ρ+ ρ∇ · u (5)

And we notice the material derivative D
Dt

= ∂ρ
∂t

+ u ·∇ will give us

0 =
Dρ

Dt
+ ρ∇ · u or more simply 0 =

Dρ

Dt
+ ∇ · (ρu) (6)

This is still the general case for a fluid that can have a spatially and time varying density. Now
we assume the special case of incompressible flow in which ρ is uniform. The material derivative
term vanishes and the expression reduces to

∇ · u = 0 (7)

This demonstrates that in an incompressible flow, the divergence of velocity must be zero. These
two notions are used interchangeably and referred to as the incompressibility constraint.
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Conservation of Momentum

In order to consider the Conservation of momentum, set φ = u, which gives

d

dt

∫
Ω

ρudΩ =
∂

∂t

∫
Ω

ρudΩ +

∫
S

ρu (u · n̂) dS (8)

This time the LHS are the total forces acting on the control volume, which consist of the body
forces acting on the volume and the tractions acting on the surface. For now, we will denote the
body forces as simply fb which are essentially the same forces acting on a body in Newton’s law,
f = ma. The forces acting on the body are conservative, such as gravity which is an example
of a conservative force because no dissipation occurs while moving a point mass around a closed
loop. Again, we will bring the ∂

∂t
inside of the first RHS term and apply Green’s theorem to

convert the surface integral into a volume integral.
The surface tractions correspond to surface stresses, that we denote with the stress tensor τ

which is the total stress. So far we have∫
Ω

ρfbdΩ +

∫
S

n̂ · τdS =

∫
Ω

∂

∂t
(ρu)dΩ +

∫
Ω

∇ · (ρuu)dΩ (9)

We use divergence theorem again on the last remaining surface integral∫
Ω

ρfbdΩ +

∫
Ω

∇ · τdΩ =

∫
Ω

∂

∂t
(ρu)dΩ +

∫
Ω

∇ · (ρuu)dΩ (10)

and can now combine into a single integral for each side∫
Ω

(
ρfb + ∇ · τ

)
dΩ =

∫
Ω

(
∂

∂t
(ρu) + ∇ · (ρuu)

)
dΩ (11)

Again, we assert that this must be true for any arbitrary control volume, so we can drop the
integral which gives us

ρfb + ∇ · τ =
∂

∂t
(ρu) + ∇ · (ρuu) (12)

Let’s pause for a moment and consider the physical meaning of these terms. The LHS is same
as before, these are the body forces acting on the fluid (per unit volume) and the stresses on the
surface of the volume (per unit volume). The first term on the RHS is the rate of increase of
momentum (per unit volume). The second term is rate of momentum loss by advection through
the surface of the volume (per unit volume) and looks like the divergence of kinetic energy. This
last expression (ρuu) actually has the form of a tensor, which makes the operation of ∇ · (ρuu)
somewhat difficult to interpret in vector format. However, in indicial notation, the operation is

mathematically unambiguous,
∂(ρuiuj )

∂xj
. The expression is called a dyadic product and has the

tensor identity:
∇ · (ab) = a∇b+ b∇ · a (13)

applying this identity to the (ρuu) term gives

∇ · (ρuu) = ρu∇u+ u∇ · (ρu) (14)

Substituting these terms into the earlier equation we now have

ρfb +∇ · τ =
∂(ρu)

∂t
+ ρu∇u+ u∇ · (ρu) (15)
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We also know that the conservation of mass holds, and we use its earlier form of

∇ · (ρu) = −∂ρ
∂t

(16)

to substitute into the last term on the RHS from the previous equation, which gives

ρfb +∇ · τ =
∂(ρu)

∂t
+ ρu∇u− u ∂ρ

∂t
(17)

We can expand out the first term on the RHS using the product rule

∂(ρu)

∂t
= ρ

∂u

∂t
+ u

∂ρ

∂t
(18)

now substituting this back into the previous equation

ρfb +∇ · τ = ρ
∂u

∂t
+ u

∂ρ

∂t
+ ρu∇u− u ∂ρ

∂t
(19)

now the second and fourth terms cancel while the first and third terms combine to become the
material derivative of u

ρfb +∇ · τ = ρ
Du

Dt
(20)

Rearrange the order of the terms and consider their physical meaning.

D(ρu)

Dt
= ∇ · τ + ρfb (21)

The LHS is the inertial term and represents the transport of momentum in a fluid, which is
described by the material derivative of ρu. This is balanced by two physical quantities: 1) the
divergence of a source term, τ , which represents the total stress acting on the body and 2) the
body forces to which the fluid is subjected. This is the continuum form of f = ma, for fluids
and other continua. [Note, at this stage for a rotating frame, substitute u for the appropriate
version that includes the angular and translational velocities.]

Constitutive Relationship

The first thing to do is rewrite τ (total stress) as two parts, the isotropic (normal) stress and
the deviatoric stress arising from shear stresses:

τ = −PI + σ (22)

where I is the identity matrix and P is the first invariant of the stress.
In order to describe how the applied deviatoric stress generates deformation of the fluid, we

need to know the constitutive relationship between stress and strain rate (i.e. the rheology of
the fluid). The theory of Newtonian fluids leads to the following relationship

τ = κ (∇ · u) I + η
(
∇u+ (∇u)T

)
(23)

where T indicates the transpose of the tensor, κ is the bulk (or expansion) viscosity and η is
the dynamic viscosity. For an incompressible fluids, the divergence of velocity is zero so the
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first term vanishes. To gain some insight into the second term, we will use the definition of the
deformation tensor, D, or strain rate tensor, which is

D =
1

2

(
∇u+ (∇u)T

)
(24)

it is a symmetric tensor that physically describes the rate of stretching of a fluid. A lot of people
write this in indicial notation and it is more commonly called e:

e =
1

2

(
δui

δxj
+
δuj

δxi

)
(25)

In either form, it is also complemented by the antisymmetric friend, the vorticity tensor (or spin
tensor)

W = −1

2

(
∇u− (∇u)T

)
=

1

2

(
δui

δxj
− δuj

δxi

)
(26)

The vorticity tensor describes the rotational component of deformation. In general, any defor-
mation can be decomposed into two parts, the stretching and the vorticity. Of course, these two
tensors can be assembled into a single tensor by simple addition to give L, the velocity gradient
tensor

L = ∇u = D −W (27)

Substituting back in, everything simplifies down to the usual constitutive relationship

σ = 2ηD (28)

and now we can replace the total stress with the two parts (isotropic and deviatoric)

τ = −PI + 2ηD (29)

Navier Stokes equation

Getting back to the conservation of momentum equation, we can substitute the new expression
for total stress into the stress divergence

ρ
Du

Dt
= ∇ · (−PI + η

(
∇u+ (∇u)T

)
+ ρfb (30)

We need apply the product rule again

ρ
Du

Dt
= −∇P + η

(
∇2u+∇(∇ · u)

)
+ ρfb (31)

once again, notice there is a divergence of velocity, which must be set to zero for incompressible
flow and we finally arrive at the Navier-Stokes equation

ρ
Du

Dt
= −∇P + η∇2u+ ρfb (32)

dividing through by ρ reveals that the last term on the RHS is actually the diffusion of momentum
(ν = η/ρ is the kinematic viscosity which has units of diffusivity, m2s−1 )

Du

Dt
= −1

ρ
∇P + ν∇2u+ fb (33)
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Back up a few steps to when the product rule was applied and notice that it was assumed that
viscosity, η, is a constant. This is true for many disciplines that use fluid dynamics, but the one
thing that is true for Earth materials is that η is rarely constant because it depends strongly
on temperature, pressure, stress, grain size, water content, etc. To be technically correct when
implementing this divergence operator, one must be very careful in their treatment of η.
The most common form of the Navier-Stokes equation includes gravity as the only body force

Du

Dt
= −1

ρ
∇P + ν∇2u+ g (34)

Scaling analysis and Dynamic similarity

We can gain further insight into the equation by performing a scaling analysis. This allows the
equation to become reduced to the least number of controlling parameters. Right now, the key
variable, u, depends on several parameters such as geometry, viscosity, density. If one conducted
a systematic study to determine the velocity and varied each of these parameters over some range,
it would involve hundreds of experiments. There is some cost associated with each experiment
such as your time, the materials, and the chance for experimental error also increases with the
number of experiments performed which will hamper the analysis.

The technique for extracting the key controlling parameters of a governing equation is called
non-dimensionalization. Each of the variables becomes non-dimensionalized by a characteristic
variable. This is a great source of inconsistency amongst all the books, as usually either an
asterisk an apostrophe is used and the non-dimensional variables are referred to as the “primed”
variables yet other times the variables are renamed as their non-dimensional equivalents and
then the dimensional variables are denoted with an asterisk or apostrophe (the latter case is the
most confusing..). Here is the definition of all the relevant dimensionless variables (which I will
denote with an asterisk)

u∗ = u
U

x∗ = x
L
, y∗ = y

L
, z∗ = z

L

t∗ = tU
L
, ∇∗ = L∇

P ∗ = P−P0

ρU2 or even better P ∗ = P+ρgz
ρU2

(35)

where P0 is some representative value of the (modified) pressure in the fluid. There are usually
several options for how to non-dimensionalize the pressure term, and the latter choice (using the
hydrostatic pressure, ρgz) is an idea of Bernoulli’s that is based upon hindsight.

Now we can rewrite the Navier-Stokes equation in terms of the non-dimensionalized quantities
and include the force term ρg as −ρgẑ

ρ
Du∗U

Dt∗ L
U

= − 1

L
∇∗(ρU2P ∗ − ρgz∗L) + η

1

L2
∇∗2u∗U − ρgẑ (36)

grouping all the characteristic scale quantities together

ρU2

L

Du∗

Dt∗
= −ρU

2

L
∇∗P ∗ + ρgz∗ +

ηU

L2
∇∗2u∗ − ρgẑ (37)
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Now the usefulness of Bernoulli’s hindsight trick is obvious as the body force terms cancel because
the unit vector, ẑ, is also dimensionless. Since the reference pressure, P0, is an arbitrary choice,
one can pick whatever is most convenient. In this case, Bernoulli chose a reference pressure such
that it canceled the effect of gravity. Tritton’s book has additional insight: ”Since the density is
assumed to be uniform, the gravitational force is balanced by a vertical pressure gradient which
is present whether or not the fluid is moving... This hydrostatic balance can be subtracted out
of the dynamical equation..” What becomes obvious is that only pressure gradients arising from
dynamics are important for the flow. Therefore, P ∗ can be thought of as a dynamic pressure and
the differences in this dynamic pressure result in flow.

Dividing the entire equation through by the quantity, ρU2/L, gives

Du∗

Dt∗
= −∇∗P ∗ +

η

ρUL
∇∗2u∗ (38)

This is the non-dimensional form of the Navier-Stokes equation and the non-dimensional group,
ρUL/η is known as the Reynolds number, Re

Du∗

Dt∗
= −∇∗P ∗ +

1

Re
∇∗2u∗ (39)

Before we started, the main variable, u, depended on at least 3 parameters. But after non-
dimensionalization, it is revealed that there is only a single parameter, Re, controlling the gov-
erning equation. An important note here is that in order to solve for the flow using the non-
dimensional form, the boundary conditions must also be non-dimensionalized using the same
process.

The idea of dynamic similarity is that any flow will be similar to any other flow if they have
the same non-dimensional number (Re in this case) as well as the same boundary conditions.
This is how one can properly scale experiments such that the results of the scaled model are
similar to the real case. As an example, in my research I have used fluid dynamic scalings for a
penny sinking through a jar of honey to elucidate the fluid dynamics of subducted slab sinking
through the Earth’s mantle.

Physically, the Reynolds number represents the balance between inertial and viscous forces and
this balance completely determines the fluid dynamic regime, whether the flow is viscous (Re <
1), laminar (Re < 2000) or turbulent (Re > between 2000 and 105). For geologic materials with
very high viscosities, the viscous forces dominant to the point that the inertial forces can be
neglected and this regime (Re < 1) is known as Stokes Flow.

There are many other non-dimensional numbers, depending on which forces are included as
well as coupling to other governing equations which can produce an equivalent controlling param-
eter. You may have heard of some of these before, such as the Mach number (Ma), the Ekman
number (Ek), the Rossby number (Ro), the Rayleigh number (Ra). Many of the dimensionless
groups don’t usually play a role in mantle dynamics, like the Froude number, the Weber number,
or the Strouhal number, but these play an important role in other fluid dynamic processes.

For a 3-D geometry, we will have 4 unknowns (3 components of velocity and the pressure)
and so we need to solve 4 equations. In Cartesian, and going back to the dimensional form, the
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equations are

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= 0

ρ
[
∂u
∂t

+ u∂u
∂x

+ v ∂u
∂y

+ w ∂u
∂z

]
= −∂P

∂x
+ η

[
∂2u
∂x2 + ∂2u

∂y2
+ ∂2u

∂z2

]
+ Fx

ρ
[
∂v
∂t

+ u ∂v
∂x

+ v ∂v
∂y

+ w ∂v
∂z

]
= −∂P

∂y
+ η

[
∂2v
∂x2 + ∂2v

∂y2
+ ∂2v

∂z2

]
+ Fy

ρ
[
∂w
∂t

+ u∂w
∂x

+ v ∂w
∂y

+ w ∂w
∂z

]
= −∂P

∂z
+ η

[
∂2w
∂x2 + ∂2w

∂y2
+ ∂2w

∂z2

]
+ Fz

(40)

In geometries other than Cartesian such as Cylindrical polar (r, θ, z) and Spherical polar (r, θ, φ),
one has to include all the appropriate geometrical terms arising from the gradient and Laplacian
operators.

Creeping viscous flow past a sphere

Because the viscous terms dominate, the inertial terms can be neglected and the governing
equation is referred to as the Stokes equation

0 = −∇P ∗ +
η

ρUL
∇∗2u∗ (41)

in which pressure variations inside the fluid balance the viscous forces.

The most famous application of Stokes flow is that of creeping flow around a sphere. In a
laboratory reference frame, the sphere sinks through a viscous fluid and this is actually the fluid
dynamics inside a viscometer which is an instrument used to measure viscosity. The solution to
the problem of a sinking Stokes sphere is done numerous places (basically every book on fluid
dynamics that exists). The version of the solution given below is largely taken from Turcotte
and Schubert (1982).

We begin with the dimensional form of the Stokes equation in spherical polar geometry, with the
coordinate system that has θ = 180◦ in the flow direction, i.e. the fluid approaches the sphere
from z = ∞ with velocity −U0 in the z-direction. The problem is solved in the reference frame
of the sphere (so flow is moving past the sphere) and the sphere has radius a. The problem has
an azimuthal symmetry such that uφ=0 and ∂/∂φ = 0.

1
r2

∂
∂r

(r2ur) + 1
r sin θ

∂
∂θ

(sin θ uθ) = 0

−∂P
∂r

+ η
[

1
r2

∂
∂r

(
r2 ∂ur

∂r

)
+ 1

r2 sin θ
∂
∂θ

(
sin θ ∂ur

∂θ

)
− 2

r2
ur − 2

r2 sin θ
∂
∂θ

(uθ sin θ)
]

= 0

−1
r
∂P
∂θ

+ η
[

1
r2

∂
∂r

(
r2 ∂uθ

∂r

)
+ 1

r2 sin θ
∂
∂θ

(
sin θ ∂uθ

∂θ

)
+ 2

r2
∂ur
∂θ
− 1

r2 sin2 θ
uθ
]

= 0

(42)
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We can solve these equations subject to these 4 boundary conditions

the “no-slip” velocity boundary conditions:
(1) ur = 0 at r = a
(2) uθ = 0 at r = a

and the “far field” velocity boundary conditions:
(3) ur → −U0 cos θ as r →∞
(4) uθ → U0 sin θ as r →∞

(43)

This is one of those systems of PDE’s that is obvious how to solve it when someone else has
already found the solution. In any case, let it be said that some pretty smart people have worked
on this. According to Turcotte and Schubert, the nature of the boundary conditions suggests
that the solution is of the form

ur = f(r) cos θ and uθ = g(r) sin θ (44)

Substituting these functions into the governing equations we obtain

−1
2r

d
dr

(r2f) = g

−∂P
∂r

+ η cos θ
r2

[
d
dr

(
r2 df

dr

)
− 4(f + g)

]
= 0

−∂P
∂θ

+ η sin θ
r

[
d
dr

(
r2 dg

dr

)
− 2(f + g)

]
= 0

(45)

Now apply the ∂/∂θ and ∂/∂r derivatives to the momentum equations for ur and uθ, respectively

−1
2r

d
dr

(r2f) = g

∂
∂θ

{
−∂P

∂r
+ η cos θ

r2

[
d
dr

(
r2 df

dr

)
− 4(f + g)

]}
= 0

∂
∂r

{
−∂P

∂θ
+ η sin θ

r

[
d
dr

(
r2 dg

dr

)
− 2(f + g)

]}
= 0

(46)

and the two momentum equations will be subtracted to eliminate the ∂2P
∂r∂θ

term which gives us

−1
2r

d
dr

(r2f) = g

1
r2

d
dr

(
r2 df

dr

)
− 4(f+g)

r2
+ d

dr

[
1
r
d
dr

(
r2 dg

dr

)
− 2(f+g)

r

]
= 0

(47)

The solutions of functions f and g can be found by assuming simple powers of r

f = crn (48)

where c is a constant. Substituting this into the continuity equation gives

g =
−c(n+ 2)

2
rn (49)
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Now the functions of f and g can be substituted into the remaining momentum equation and it
produces a simple algebraic expression which has several roots for n

n(n+ 3)(n− 2)(n+ 1) = 0 which gives n = 0,−3, 2,−1 (50)

this gives the full description for the linear combinations of f(r) and g(r) using the values of n
that were determined

f = c1 + c2
r3

+ c3
r

+ c4r
2

g = −c1 + c2
2r3
− c3

2r
− 2c4r

2

(51)

These can be substituted into the expressions for velocity to give

ur = (c1 + c2
r3

+ c3
r

+ c4r
2) cos θ

uθ = (−c1 + c2
2r3
− c3

2r
− 2c4r

2) sin θ
(52)

We can start to apply the boundary conditions to solve for the constants. Applying the far field
velocity boundary conditions gives

c1 = −U0 and c4 = 0 (53)

Applying the no-slip condition at r = a gives

c2 =
−a3U0

2
and c3 =

3aU0

2
(54)

This gives the final expressions for the velocity components

ur = −U0

(
1 + a3

2r3
− 3a

2r

)
cos θ

uθ = U0

(
1− a3

4r3
− 3a

4r

)
sin θ

(55)

These can be substituted back into the original equation for momentum in the θ direction and
integrating with respect to θ

P =
3ηaU0

2r2
cos θ (56)

The solution for flow is now given as both components of velocity as well as pressure have been
solved. We can learn even more about these fluid dynamics if we consider the physics near the
surface of the sphere. Stokes flow is a balance of viscous forces and pressure and the net effect
of these forces describes the amount of drag the sphere has with respect to the surrounding flow.
Since we know the solution to the flow, we will can calculate these forces and determine the drag
on the sphere. There are two contributions to the drag, one from pressure and one from viscous
stresses.

D = DP +Dv (57)

In order to calculate the contribution from pressure, we need the component of the force in the
direction that pressure is pushing on the sphere. This equates to the vertical component of the
pressure in the negative z direction projected on the surface of the sphere at radius a, or just

P cos θ =
3ηU0

2a
cos2 θ (58)
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We need to integrate this pressure over the surface of the sphere, but since it only acts on the
cross-sectional area of the sphere (πa2 sin θ) we have

DP =

∫ π

0

(P cos θ) 2πa2 sin θdθ = 3πηaU0

∫ π

0

sin θ cos2 θdθ = 2πηaU0 (59)

The viscous contribution to the drag has two components, one from the normal stresses and one
from the tangential stress, so we need to apply the constitutive relation (σ = ηε̇) using the strain
rates in spherical polar coordinates

(σrr)r=a = 2η
(
∂ur
∂r

)
r=a

(σrθ)r=a = η
(
r ∂
∂r

(
uθ
r

)
+ 1

r
∂ur
∂θ

)
r=a

(60)

These are easily found by substituting in the solutions for the velocity components

(σrr)r=a = 0

(σrθ)r=a = 3ηU0 sin θ
2a

(61)

There are no normal stresses because the sphere is defined to rigid. It is a property of incom-
pressible fluid that the deviatoric stress acting across a rigid boundary is wholly tangential. The
tangential stress is in the θ direction all along the sphere, but we need the component in the
negative z direction so use the sin θ projection

σrθ sin θ =
3ηU0 sin2 θ

2a
(62)

Once again, integrate the product of this quantity with the cross-sectional area of the sphere

Dv =

∫ π

0

(
3ηU0 sin2 θ

2a

)
2πa2 sin θdθ = 3πηaU0

∫ π

0

sin3 θdθ = 4πηaU0 (63)

Notice that the contribution to drag from viscous stresses is exactly double the contribution
from pressure forces. It is more common to report the drag coefficient, cD, defined the total drag
normalized by both a characteristic pressure (1

2
ρfU

2
0 ) and cross-sectional area of the sphere (πa2)

cD ≡
D

1
2
ρU2

0πa
2

=
DP +Dv

1
2
ρU2

0πa
2

=
6πηaU0

1
2
ρU2

0πa
2

=
12

(ρU0a) /η
=

24

Re
(64)

Notice that the Reynolds number appears in the denominator. These sinking sphere experiments
can be done at various Re and it is very striking that the predicted Stokes drag coefficient holds
remarkably well up until Re ∼ 1 when inertial effects begin to become important.

The final thing that is useful to do is calculate the terminal velocity of the sphere. As the
sphere can be rising or sinking, it has many applications in geological fluid dynamics such as
settling of crystals in a magma, or rise of a plume head in the mantle. Archimedes principle
describes the buoyancy force of an object as the density contrast with respect to a background
fluid, in this case a rising sphere

F = (ρf − ρs)g
(

4

3
πa2

)
(65)

and by setting this force equal to the drag force, the terminal upward velocity is obtained.

U =
a2(ρf − ρs)g

9η
(66)

It is important to recognize that the velocity depends on the radius squared.
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